詳細介紹
閘門加工廠-北碚水利工程閘門qsl手輪螺桿啟閉機產品簡介
qsl手輪螺桿啟閉機屬于生產的一種產品,采用螺旋絲桿傳動,其結構緊湊合理,啟閉重力大,主要適用于各類污水、排水工程和水利工程中閘門、堰門等設備啟閉的配套產品。產品具有結構簡單,使用方便,常用于小啟閉力的閘門、堰門啟閉配套設備。螺桿包括有電機、機架、防護罩等部件,主要是采用了減速的,是用螺旋傳動的,輸出的轉矩也比較大。使用閘門啟閉機不用再擔心會出現土建不平整的情況,能夠啟閉機的噪音和振動出現。螺桿啟閉機能夠長時間工作,它的防護等級達到了一定的層次,采用了十進制計數器的,它能夠控制形成的誤差,螺桿啟閉機能夠通過蝸桿來微動開關,其電器保護效果是很好的。螺桿啟閉機操作起來是很方便的,在現場操作的時候不需要有的操作技能知識,操作員只要知道簡單的操作就可以了。螺桿啟閉機工作原理的螺桿是受壓受拉桿件,需要下壓力迫使閘門下降時應計算壓桿的性,螺桿啟閉機結構簡單,堅固耐用,造價低廉,適用于小型平面閘門和弧形閘門,其啟閉力一般在200kn以下。500kn、750kn大容量的螺桿啟閉機也已生產,用于潛水孔平面閘門和弧形閘門的操作。
閘門加工廠-北碚水利工程閘門螺桿啟閉機操作
螺桿啟閉機屬于生產的一種產品,是一種多功能啟閉機,廣泛適用于水利工程,水電工程等各類給排水利工程程及城市污水工程中的閘口、堰門、河道工程、工作閘門及檢修閘門的上升下降調理。螺桿啟閉機由機殼、支架、螺絲帽、機蓋、螺桿、壓力軸承、螺桿、蝸桿、蝸輪手搖柄、電機、電器等組成。螺桿啟閉機選用蝸輪,蝸桿變速螺絲帽,使螺桿上下運動,具備扭矩保護和行程限位兩層防備保護,可完成遙感和現場操作,或者單臺操控或者集中多臺操控等多種操控形式,螺桿啟閉機帶有開度指示,更能的操作。
螺桿啟閉機操作規范
1,螺桿啟閉機操作運行時,必須由啟閉機單位負責人發出調度指令,不經批準不能擅自調度啟閉機,違反者將嚴肅追究有關人員責任。
2,非本單位螺桿啟閉機操作工作人員一律不得操作啟閉機及相關設備。
3,螺桿啟閉機操作人員必須對螺桿啟閉機的操作非常熟悉,堅守崗位,加強。啟閉中,操作人員更應注意。
4,開啟螺桿啟閉機前,應先檢查螺桿所處位置,電機、變速箱、皮帶等有無異常,確認正常后,才能通電進行啟閉操作,并將調度人、操作人、啟閉目的、設備檢查情況、開機時間填寫在《啟閉機操作運行記錄》。
閘門加工廠-北碚水利工程閘門桃林d水庫溢流壩弧形閘門,共計11扇,其尺寸為15x15.5m寬×高,門重約145.3t,屬于國內大型弧門,省內的表孔弧門。結構形式為主橫梁式。弧門主要由門葉、支腿、錐形鉸三部分組成。門葉曲率半徑18m,弧氏16.024m,分為四節,頂節弧長so74mm,重14.it;中節一弧長3800mm,重19.3t;中節二弧長4150mm,重21.it;底節弧長300omm,重21t。每側支腿重約24t,分為上下兩個制作單元,門葉端支臂中心距956omm;每側錐形鉸重約10t,支錐中心距為1420omm,以上三個部分通過螺栓連為一體。1支腿制作工藝支腿材料為16mn、q235——b其結構及主要幾何尺寸如圖1所示。整個支腿制作分為上下支臂兩部分,上下支臂均為箱形結構。l.l箱形交臂的組焊支腿制作首先是單根箱形支臂的組焊。箱形截面尺寸如圖2所示。腹板翼板下料時,長度留ioo0mm焊接收縮及修割余量。刨邊機刨腹板坡口時,嚴格控制.弧形鋼閘門是水工建筑物中運用廣泛的門型之一。因其具有啟閉力小、構造簡單、操作方便、無門槽等優點,故在國內的水工建筑物上得到了廣泛應用。弧形閘門的運行實踐表明,閘門在啟閉過程或局部開啟時,甚至在關閉擋水時,常常產生振動,振動有時會達到相當嚴重的情況,從而可能引起閘門的動力破壞或某些構件的動力失穩。因此,弧形閘門的動力問題一直屬于閘門設計和運行過程中一個需要解決的重要問題。本文主要研究了弧形鋼閘門的動力特性及其動力穩定性。首先對現役弧形閘門的動力失穩問題進行了廣泛而深入的調查和分析;分析了引起閘門動力失穩的原因,提出了開展閘門動力分析的方法和思路。介紹了弧形閘門這類板、梁、桿空間組合結構的有限元動力分析的原理和方法。在此基礎上,采用大型有限元分析軟件ansys對弧門的整體結構(考慮流固耦合)作用進行了有限元動力特性分析,通過計算,搞清了弧門自振特性隨開度的變化規律和流固耦合作用對閘門自振特性的影響。此外,本文還利用ansys對閘門弧形鋼閘門是水工建筑物中運用廣泛的門型之一,閘門結構的振動問題是水利工程中普遍存在的問題。隨著我國水利、水電、水運建設事業的不斷發展,高水頭大壩不斷興建,工作閘門的承壓水頭日益加大,孔口尺寸、弧門支臂長度日益增大,低水頭大壩的控制閘門尺寸亦越加大,大量的閘門需要滿足局部開啟要求,運行條件日趨復雜。在水動力荷載作用下閘門結構的流激振動、動力穩定性及安全可靠性等問題越來越受到人們的高度重視。對于這種流激振動,僅僅從水力學角度和結構特性方面進行優化,仍然難以避免。采用結構振動智能控制的方法是解決流激振動問題的進一步措施,同時,對其進行在線健康檢測與損傷診斷也顯得尤為重要。不管是結構智能控制,還是結構健康監測與損傷診斷,弄清楚工程結構所承受的荷載是它們的共同前提。而閘門振動時所受的水動力荷載,直接測定十分困難,精度也很低,因此,進行水工弧形鋼閘門的動態荷載識別是一個急需研究解決的重要課題。